Ocular Response Analyzer® G3
Tonómetro automático + Histéresis corneal
Guía del usuario
Introducción

Felicitaciones por adquirir Reichert® Ocular Response Analyzer® G3 (modelo 16170).

El Ocular Response Analyzer G3 (ORA) es un instrumento revolucionario diseñado para medir la presión intraocular del ojo y las propiedades biomecánicas de la córnea en una simple medición rápida. El instrumento tiene un innovador sistema de alineación automática que elimina la subjetividad del operador y proporciona mediciones precisas reiteradas.

Esta Guía del usuario está diseñada como manual de capacitación y referencia para la operación, el mantenimiento y la resolución de problemas de la unidad. Le recomendamos que lea esta guía detenidamente antes de utilizar la unidad y que siga sus instrucciones para garantizar el rendimiento óptimo del instrumento nuevo. Si se usa correctamente, el Ocular Response Analyzer G3 proporcionará mediciones reiteradas rápidas y precisas durante años. Este instrumento solo debe ser operado por profesionales especializados en cuidado ocular debidamente capacitados, como oftalmólogos, optometristas, ópticos y técnicos de cuidado ocular. Únicamente personal instruido en su uso y funcionamiento puede usar esta unidad.

Conserve esta guía para consultarla en el futuro y compartirla con otros usuarios. Si necesita copias adicionales de este manual o tiene preguntas relacionadas con el Ocular Response Analyzer G3, póngase en contacto con su distribuidor local de Reichert autorizado o directamente con el Departamento de Atención al Cliente a:

Tel.: 716-686-4500
Fax: 716-686-4555
Correo electrónico: reichert.information@ametek.com

Indicaciones de uso

El ORA está diseñado para medir la presión intraocular del ojo y la respuesta biomecánica de la córnea a fin de contribuir al diagnóstico y el control del glaucoma.

Contraindicaciones

Ninguna conocida.

Principio de funcionamiento

El Ocular Response Analyzer G3 usa un proceso de aplanamiento bidireccional dinámico patentado para medir la presión intraocular (IOP) del ojo y un indicador de las propiedades biomecánicas de la córnea llamado histéresis corneal (CH) que indica las propiedades viscoelásticas de la córnea.

El Ocular Response Analyzer G3 usa un veloz impulso de aire para aplicar presión en la córnea y un sistema óptico electrónico avanzado para monitorear la deformación. El pulso de aire colimado precisamente medido hace que la córnea se retraiga más allá del aplanamiento en una ligera concavidad. La bomba de aire se apaga y, a medida que disminuye la presión, la córnea comienza a regresar a su configuración normal. En este proceso, vuelve a pasar por el estado de aplanamiento.

El sistema de detección por aplanamiento monitorea la córnea durante todo el proceso, que demora solo milisegundos. Dos valores de presión independientes se derivan de los eventos de aplanamiento interno y externo. La amortiguación viscosa de la córnea demora los eventos de aplanamiento interno y externo, lo que da como resultado dos valores de presión diferentes.

El promedio de estos dos eventos de aplanamiento proporciona una medición reiterada de la IOP de Goldman (IOPg). La diferencia entre estos dos valores de presión es la histéresis corneal (CH). La capacidad para medir este efecto de CH es la clave para comprender las propiedades biomecánicas de la córnea y su influencia en el proceso de medición de la IOP.
<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducción</td>
<td>3</td>
</tr>
<tr>
<td>Indicaciones de uso</td>
<td>3</td>
</tr>
<tr>
<td>Contraindicaciones</td>
<td>3</td>
</tr>
<tr>
<td>Principio de funcionamiento</td>
<td>3</td>
</tr>
<tr>
<td>Advertencias y precauciones</td>
<td>6</td>
</tr>
<tr>
<td>Información sobre los símbolos</td>
<td>8</td>
</tr>
<tr>
<td>Montaje del instrumento</td>
<td>9</td>
</tr>
<tr>
<td>Instrucciones de desembralaje</td>
<td>9</td>
</tr>
<tr>
<td>Aplicación de la alimentación de entrada</td>
<td>10</td>
</tr>
<tr>
<td>Desconexión de la alimentación de entrada</td>
<td>10</td>
</tr>
<tr>
<td>Identificación de las piezas</td>
<td>11</td>
</tr>
<tr>
<td>Accesorios</td>
<td>11</td>
</tr>
<tr>
<td>Componentes</td>
<td>11</td>
</tr>
<tr>
<td>Definición de iconos</td>
<td>12</td>
</tr>
<tr>
<td>Configuración predeterminada</td>
<td>13</td>
</tr>
<tr>
<td>Opciones de configuración</td>
<td>14</td>
</tr>
<tr>
<td>Configuración del tonómetro</td>
<td>15</td>
</tr>
<tr>
<td>Configuración de impresión</td>
<td>16</td>
</tr>
<tr>
<td>Configuración del puerto de comunicación</td>
<td>17</td>
</tr>
<tr>
<td>Configuración general</td>
<td>18</td>
</tr>
<tr>
<td>Instrucciones de uso</td>
<td>19</td>
</tr>
<tr>
<td>Definiciones e interpretación de los valores de medición</td>
<td>19</td>
</tr>
<tr>
<td>Encendido</td>
<td>19</td>
</tr>
<tr>
<td>Alineación y medición</td>
<td>20</td>
</tr>
<tr>
<td>Soplo de demostración</td>
<td>20</td>
</tr>
<tr>
<td>Posicionamiento correcto del paciente</td>
<td>22</td>
</tr>
<tr>
<td>Conteo de mediciones</td>
<td>25</td>
</tr>
<tr>
<td>Resultados de medición</td>
<td>26</td>
</tr>
<tr>
<td>Promedio inteligente de datos</td>
<td>26</td>
</tr>
<tr>
<td>Promedio directo de datos</td>
<td>26</td>
</tr>
<tr>
<td>Ejemplos: promedio inteligente</td>
<td>27</td>
</tr>
<tr>
<td>Ejemplos: promedio directo</td>
<td>28</td>
</tr>
<tr>
<td>IOPcc, IOPg o CH</td>
<td>29</td>
</tr>
<tr>
<td>Medición del siguiente ojo</td>
<td>30</td>
</tr>
<tr>
<td>Modo de suspensión</td>
<td>31</td>
</tr>
<tr>
<td>Puntajes de onda bajos</td>
<td>32</td>
</tr>
<tr>
<td>Pantallas de análisis</td>
<td>33</td>
</tr>
<tr>
<td>Histograma de CH</td>
<td>33</td>
</tr>
<tr>
<td>Señal de medición de OD/OS</td>
<td>34</td>
</tr>
<tr>
<td>Mensajes de error de posicionamiento</td>
<td>35</td>
</tr>
<tr>
<td>Impresión de datos de medición</td>
<td>36</td>
</tr>
<tr>
<td>Limpieza y mantenimiento</td>
<td>37</td>
</tr>
<tr>
<td>Fusibles</td>
<td>37</td>
</tr>
<tr>
<td>Limpieza externa</td>
<td>37</td>
</tr>
<tr>
<td>Limpieza del apoyo de la frente</td>
<td>37</td>
</tr>
<tr>
<td>Limpieza de la pantalla del operador</td>
<td>37</td>
</tr>
<tr>
<td>Papel de impresora</td>
<td>37</td>
</tr>
</tbody>
</table>
Contenido (continuación)

- Limpieza de las ventanas de posicionamiento y los tubos de aire 38
- Reemplazo de la almohadilla de apoyo de la frente 39
- Solución de problemas .. 40
- Pantalla de ayuda ... 40
- Servicio .. 41
- Histograma de medición ... 41
- Errores relacionados con la impresión ... 42
- Problemas de fecha y hora ... 42
- Tabla de errores comunes ... 43
- Especificaciones generales .. 44
- Clasificaciones ... 45
- Tablas de orientación .. 46
- Garantía ... 51
- Apéndice A: descripción de datos serieles ... 52
Advertencias y precauciones

Reichert Technologies® no se responsabiliza de la seguridad ni de la confiabilidad de este instrumento cuando:

- Personas o distribuidores no autorizados monten, desmonten o realicen reparaciones o modificaciones.
- El instrumento no se utiliza de acuerdo con esta Guía del usuario.

ADVERTENCIA: UNA INSTRUCCIÓN QUE LLAMA LA ATENCIÓN SOBRE EL RIESGO DE LESIÓN O MUERTE.

ADVERTENCIA: LA LEY FEDERAL DE LOS ESTADOS UNIDOS Y LA LEGISLACIÓN EUROPEA EXIGEN QUE ESTE DISPOSITIVO SEA ADQUIRIDO ÚNICAMENTE POR UN MÉDICO O UNA PERSONA QUE ACTÚE EN SU REPRESENTACIÓN.

ADVERTENCIA: ESTE INSTRUMENTO DEBE UTILIZARSE DE ACUERDO CON LAS INSTRUCCIONES DESCRIPTAS EN ESTA GUÍA DEL USUARIO. LA SEGURIDAD DEL OPERADOR Y EL RENDIMIENTO DEL INSTRUMENTO NO PUEDEN GARANTIZARSE SI SE UTILIZA DE UNA MANERA NO ESPECIFICADA POR REICHERT TECHNOLOGIES.

ADVERTENCIA: NO INTENTE REPARAR O HACER REPARAR ESTE INSTRUMENTO SIN LA AUTORIZACIÓN DEL FABRICANTE. CUALQUIER REPARACIÓN O REVISIÓN REALIZADA EN ESTE INSTRUMENTO DEBE SER EFECTUADA POR PERSONAL EXPERIMENTADO O POR DISTRIBUIDORES CAPACITADOS POR REICHERT; DE LO CONTRARIO, EL OPERADOR O EL PACIENTE PUEDEN SUFRIR LESIONES GRAVES.

ADVERTENCIA: NO SE PUEDEN REALIZAR MODIFICACIONES EN ESTE INSTRUMENTO. CUALQUIER MODIFICACIÓN REALIZADA EN ESTA UNIDAD DEBE SER AUTORIZADA POR REICHERT; DE LO CONTRARIO, EL OPERADOR O EL PACIENTE PUEDEN SUFRIR LESIONES GRAVES.

ADVERTENCIA: SI ESTE INSTRUMENTO SE MODIFICA, DEBEN LLEVARSE A CABO INSPECCIONES Y PRUEBAS ADECUADAS PARA GARANTIZAR EL USO SEGURO Y CONTINUO DE ESTE INSTRUMENTO.

ADVERTENCIA: PARA EVITAR EL RIESGO DE DESCARGA ELÉCTRICA, ESTE EQUIPO DEBE CONECTARSE SOLAMENTE A UNA RED ELÉCTRICA CON CONEXIÓN A TIERRA; DE LO CONTRARIO, PODRÍAN PRODUCIRSE DAÑOS EN ESTE INSTRUMENTO O EL OPERADOR O EL PACIENTE PODRÍAN SUFRIR LESIONES.

ADVERTENCIA: ASEGÚRESE DE QUE EL VOLTAJE APLICADO A LA UNIDAD SEA EL MISMO QUE EL VOLTAJE QUE SE INDICA EN LA PLACA DE DATOS; DE LO CONTRARIO, PODRÍAN PRODUCIRSE DAÑOS EN EL INSTRUMENTO O EL OPERADOR O EL PACIENTE PODRÍAN SUFRIR LESIONES.

ADVERTENCIA: ESTE INSTRUMENTO DEBE CONECTARSE A UN TOMACORRIENTE CON CONEXIÓN A TIERRA. NO RETIRE NI VENZA LA CONEXIÓN A TIERRA DEL CONECTOR DE ENTRADA DE CORRIENTE O EL CABLE DE ALIMENTACIÓN DE LA UNIDAD DE ESTE INSTRUMENTO; DE LO CONTRARIO, PODRÍAN PRODUCIRSE DAÑOS O EL OPERADOR O EL PACIENTE PODRÍAN SUFRIR LESIONES.

ADVERTENCIA: EL EQUIPO O EL SISTEMA NO DEBEN UTILIZARSE AL LADO O ENCIMA DE OTROS EQUIPOS; SI ES NECESARIO UTILIZARLO AL LADO O ENCIMA DE OTROS EQUIPOS, EL EQUIPO O EL SISTEMA DEBERÁN SUPERVISARSE PARA VERIFICAR SU CORRECTO FUNCIONAMIENTO EN DICHA DISPOSICIÓN.

ADVERTENCIA: ESTE INSTRUMENTO NO ES APTO PARA SER USADO CERCA DE MEZCLAS ANESTÉSICAS INFLAMABLES, COMO EL OXÍGENO O EL ÓXIDO NITROSO.

ADVERTENCIA: NO COLOQUE LOS DEDOS EN LA ABERTURA QUE RODEA LA PIEZA DEL EXTREMO.
ADVERTENCIA: RIESGO DE SENSIBILIDAD O LESIÓN EXACERBADAS DEL SOPLO DE AIRE DE APLANAMIENTO. LA TONOMETRÍA SIN CONTACTO NO HA DEMOSTRADO SER PERJUDICIAL. APLIQUE UN CRITERIO CLÍNICO ANTES DE INDICAR EL USO DE ESTE INSTRUMENTO INMEDIATAMENTE DESPUÉS DE UNA CIRUGÍA CORNEAL PENETRANTE, UNA LESIÓN OCULAR TRAUMÁTICA U OTRAS AFECCIONES CORNEALES SIMILARES.

PRECAUCIÓN: UNA INSTRUCCIÓN QUE LLAMA LA ATENCIÓN SOBRE EL RIESGO DE DAÑOS AL PRODUCTO.

PRECAUCIÓN: LOS CIRCUITOS INTERNOS DEL INSTRUMENTO CONTIENEN DISPOSITIVOS SENSIBLES A LAS DESCargas ELECTROSTÁTICAS (ESDS) QUE RESPONDEN A LAS CARGAS ESTÁTICAS PRODUCIDAS POR EL CUERPO HUMANO. NO QUITE LAS CUBIERTAS SIN TOMAR LAS PRECAUCIONES CORRESPONDIENTES.

PRECAUCIÓN: ESTE INSTRUMENTO NO ESTÁ DISEÑADO PARA CONECTARSE A EQUIPOS FUERA DEL CONTROL DE REICHERT TECHNOLOGIES; DE LO CONTRARIO, DEBE SOMETERSE A PRUEBAS CONFORME A LAS NORMAS IEC O ISO CORRESPONDIENTES.

PRECAUCIÓN: NO UTILICE SOLVENTES O SOLUCIONES DE LIMPIEZA FUERTES EN NINGUNA PIEZA DE ESTE INSTRUMENTO, YA QUE PODRÍAN PRODUCIRSE DAÑOS EN LA UNIDAD. CONSULTE LA SECCIÓN DE MANTENIMIENTO PARA OBTENER INSTRUCCIONES DETALLADAS DE LIMPIEZA.

PRECAUCIÓN: EL USO DE LIMPIADORES A BASE DE AMONIÁCO EN LA PANTALLA DE CRISTAL LÍquido (LCD) PUEDE CAUSAR DAÑOS EN LA PANTALLA. CONSULTE LA SECCIÓN DE MANTENIMIENTO PARA OBTENER INSTRUCCIONES DETALLADAS DE LIMPIEZA.

PRECAUCIÓN: LOS EQUIPOS MÉDICOS ELECTRÓNICOS REQUIEREN PRECAUCIONES ESPECIALES RESPECTO DE LA COMPATIBILIDAD ELECTROMAGNÉTICA (EMC) Y DEBEN INSTALARSE Y PONERSE EN FUNCIONAMIENTO CONFORME A LA INFORMACIÓN DE EMC PROVISTA EN LOS DOCUMENTOS ADJUNTOS.

PRECAUCIÓN: LOS EQUIPOS DE COMUNICACIONES DE RADIOFRECUENCIA (RF) PORTÁTILES Y MÓVILES PUEDEN AFECTAR A LOS EQUIPOS MÉDICOS ELÉCTRICOS.

PRECAUCIÓN: ESTE INSTRUMENTO NO DEBE UTILIZARSE CERCA DE EQUIPOS QUIRÚRGICOS QUE EMITAN RADIACIONES DE ALTA FRECUENCIA O DE RESONANCIA MAGNÉTICA.

PRECAUCIÓN: EL USO DE ACCESORIOS Y CABLES DISTINTOS DE LOS ESPECIFICADOS O PROVISTOS POR REICHERT PODRÍA AUMENTAR LAS EMISIONES ELECTROMAGNÉTICAS O REDUCIR LA INMUNDAD ELECTROMAGNÉTICA DEL INSTRUMENTO Y PROVOCAR UN MAL FUNCIONAMIENTO.

PRECAUCIÓN: LOS EQUIPOS DE COMUNICACIONES DE RF PORTÁTILES (INCLUÍDOS LOS PERIFÉRICOS COMO CABLES DE ANTENAS Y ANTENAS EXTERNAS) DEBEN UTILIZARSE A MÁS DE 30 CM (12 PULGADAS) DE DISTANCIA DE CUALQUIER PARTE DEL INSTRUMENTO, INCLUIDOS LOS CABLES ESPECIFICADOS POR EL FABRICANTE. DE LO CONTRARIO, PODRÍA PRODUCIRSE UNA DEGRADACIÓN DEL DESEMPEÑO DE ESTE INSTRUMENTO.
Información sobre los símbolos

En el instrumento aparecen los siguientes símbolos:

- Símbolo de precaución que indica las instrucciones de funcionamiento y mantenimiento importantes incluidas en esta Guía del usuario
- Pieza aplicada tipo B
- Fuente de alimentación de corriente alterna
- Conexión a tierra de protección
- ENCENDIDO/APAGADO
- Fecha de fabricación
- Fabricante
- REF Número de catálogo
- SN Número de serie
- Desechos de equipos eléctricos y electrónicos
- Cumplimiento de la directiva de dispositivos médicos 93/42/EEC
- Marca de autorización de Intertek ETL Semko de cumplimiento con las normas eléctricas
- Deben consultarse los documentos adjuntos
- Representante autorizado en la Comunidad Europea
- Contenido frágil en la caja de envío: manipular con cuidado
- Mantener seco: el paquete debe mantenerse alejado de la lluvia
- Esta parte hacia arriba: indica la posición vertical correcta del paquete
Montaje del instrumento

Se han tenido todos los cuidados para entregar de forma segura el Ocular Response Analyzer G3. El contenedor y el embalaje fueron específicamente diseñados para transportar esta unidad. Conserve el embalaje en caso de que deba volver a transportarlo.

Instrucciones de desembalaje

Retire el material de embalaje del instrumento de la siguiente manera (consulte las imágenes a la izquierda).

El instrumento está embalado en un contenedor de transporte para protegerlo de daños durante el envío. Lea la Guía del usuario antes de operar la unidad. Se proporciona una tarjeta de referencia rápida para su conveniencia y referencia durante la operación de la unidad.

1. Retire los accesorios del contenedor de transporte.

 La caja de accesorios contiene:
 - Papel de impresora (N/P 12430-887)
 - Cubierta contra el polvo (N/P 16050-089)
 - Tarjeta de referencia rápida (N/P 16170-104)
 - Guía del usuario (N/P 16170-101)
 - Almohadilla de apoyo de la frente (repuesto) (N/P 16050-170)
 - Cable de alimentación (N/P RCBL10040 de 110 V) o (N/P RCBL10041 de 230 V)

 Nota: el cable de alimentación no debe exceder los 10 pies.

 - Paquete de limpiadores de tubos (N/P 16170-004)
 - Paquete de hisopos de algodón (N/P 16170-005)

2. Retire la espuma superior (4 esquinas) del contenedor de transporte.
3. Ubique las asas en los lados de la caja interior y retírela.
4. Apoye la caja interior sobre un lado y quite la cinta adhesiva.
5. Retire los protectores de espuma superior e inferior de la caja interior.
7. Retire el Ocular Response Analyzer G3 de la bolsa de plástico y coloque la unidad sobre una mesa firme.
8. Guarde el material de embalaje en un lugar seguro de modo que esté disponible si debe volver a transportar el instrumento en el futuro.
Montaje del instrumento (continuación)

Aplicación de la alimentación de entrada

ADVERTENCIA: SE DEBE TENER CUIDADO AL COLOCAR LOS CABLES DE LOS ACCESORIOS DE MANERA QUE EL EXAMINADOR NO TROPIECE CON ELLOS Y PARA QUE NO SUPONGAN UN PELIGRO PARA EL PACIENTE.

ADVERTENCIA: COLOQUE EL INSTRUMENTO DE MANERA TAL QUE NO SE DIFICULTE EL USO DEL DISPOSITIVO DE DESCONEXIÓN (ENCHUFE).

1. Una vez que la unidad esté en un lugar seguro, aplique el voltaje de entrada correcto al instrumento mediante el cable de alimentación de la bandeja de accesorios.
2. Pulse “|” en el interruptor ON/OFF (encendido/apagado). La entrada de alimentación se encuentra en la parte inferior de la unidad (consulte el punto 8 en la página 11 para ver su ubicación).

Nota: la unidad emitirá un soplo de aire automático como parte del proceso de inicio.

3. Lea la Guía del usuario y la tarjeta de referencia rápida antes de operar este instrumento.

ADVERTENCIA: NO RETIRE LAS CUBIERTAS EXTERNAS DE LA UNIDAD NI INTENTE REPARAR LAS PIEZAS INTERNAS. PERSONAL EXPERIMENTADO O DISTRIBUIDORES CAPACITADOS POR REICHERT DEBEN LLEVAR A CABO CUALQUIER REPARACIÓN O MANTENIMIENTO DE LA UNIDAD.

PRECAUCIÓN: ASEGÚRESE DE QUE EL VOLTAJE APLICADO A LA UNIDAD SEA EL MISMO QUE EL VOLTAJE QUE SE INDICA EN LA PLACA DE DATOS QUE SE ENCUENTRA JUNTO AL RECEPTÁCULO DEL CABLE DE ALIMENTACIÓN; DE LO CONTRARIO, PODRÍAN PRODUCIRSE DAÑOS EN LA UNIDAD.

PRECAUCIÓN: PARA UNA PROTECCIÓN CONTINUA CONTRA RIESGOS DE INCENDIO, EL RECambio DE FUSIBLES DAÑADOS DEBE HACERSE CONFORME A LA CALIFICACIÓN QUE SE INDICA EN LA SECCIÓN DE ESPECIFICACIONES DE ESTE MANUAL.

Desconexión de la alimentación de entrada

1. En cualquier momento, el interruptor de encendido puede ponerse en apagado (OFF). La unidad no tiene una secuencia de apagado. Para detener el funcionamiento del instrumento, coloque el interruptor ON/OFF (encendido/apagado) en la posición OFF (O).
2. Si el instrumento estará apagado durante un período prolongado, puede desconectarse de la alimentación retirando el cable de alimentación del receptáculo.
Montaje del instrumento (continuación)

Identificación de las piezas

1. **Pantalla del operador**: muestra los datos medidos.

2. **Puerta de la impresora**: puerta de acceso al papel de impresora (se debe presionar para abrir).

3. **Apoyo de la frente**: mecanismo de alineación que se mueve hacia la derecha o la izquierda para el correcto posicionamiento del paciente.

4. **Objetivo de la pieza del extremo**: punto de medición y fijación del paciente.

5. **Marcas de alineación del ángulo del ojo (lados derecho e izquierdo)**: marcas de alineación utilizadas para indicar la altura correcta del instrumento. Deben alinearse con los ojos del paciente.

6. **Interruptor ON/OFF (encendido/apagado)**: interruptor que controla la alimentación de entrada al instrumento. “O” indica APAGADO y “|” indica ENCENDIDO.

7. **Puerto RS232C**: puerto de comunicación para la exportación de datos.

8. **Conector de potencia principal y portafusibles**: punto de conexión para la alimentación de potencia y los fusibles. Pulse las lengüetas superior e inferior en el panel de fusibles al mismo tiempo para retirar el portafusibles y los fusibles. Se encuentran en la parte inferior de la unidad.

9. **Impresora**: impresora térmica interna.

Accesorios

- Mentonera (N/P 16049)

Componentes

- Papel de impresora (N/P 12430-887)
- Cubierta contra el polvo (N/P 16050-089)
- Tarjeta de referencia rápida (N/P 16170-104)
- Almohadilla de apoyo de la frente (repuesto) (N/P 16050-170)
- Cable de alimentación (N/P RCBL10040 de 110 V) o (N/P RCBL10041 de 230 V)
- Paquete de limpiadores de tubos (N/P 16170-004)
- Paquete de hisopos de algodón (N/P 16170-005)
Montaje del instrumento (continuación)

Definición de iconos

El Ocular Response Analyzer G3 incorpora un sistema operativo fácil de usar basado en iconos/menús que aumenta la velocidad de las mediciones, la capacitación y el uso. A continuación se incluyen los iconos que se usan durante la operación de este instrumento.

Descripción de iconos

MAIN MENU (MENÚ PRINCIPAL): acceso a los menús de nivel secundario, como configuración y ayuda.

SINGLE MEASURE (MEDICIÓN ÚNICA): inicia un proceso de medición de soplo único.

MULTIPLE MEASURE (MEDICIÓN MÚLTIPLE): inicia un proceso de medición de tres o cuatro soplos.

DEMO PUFF (SOPLO DE DEMOSTRACIÓN): permite al paciente sentir un soplo de demostración suave.

CLEAR DATA (BORRAR DATOS): borra los datos de medición actuales.

PRINT (IMPRIMIR): envía datos a la impresora o el puerto RS232C.

CANCEL (CANCELAR): cancela el proceso de medición.

SELECT (SELECCIONAR): confirma la entrada.

BACK (VOLVER): regresa a la pantalla anterior.

ANALYSIS (ANÁLISIS): muestra un análisis gráfico de los actuales datos de medición.

CH HISTOGRAM (HISTOGRAMA DE CH): muestra la medición actual de la CH en comparación con la distribución demográfica normal.

OD WAVEFORM (ONDA OD): muestra la mejor onda del ojo derecho.

OS WAVEFORM (ONDA OS): muestra la mejor onda del ojo izquierdo.

SERVICE (SERVICIO): muestra información de servicio.

SERVICE HISTOGRAM (HISTOGRAMA DE SERVICIO): muestra un histograma de las últimas 400 mediciones.
Montaje del instrumento (continuación)

Configuración predeterminada

El Ocular Response Analyzer G3 tiene una configuración predeterminada que viene de fábrica. Para ver un resumen de esta configuración, consulte la página siguiente. Para ver una definición detallada y una explicación de cada configuración, consulte las secciones de configuración individual en la sección Montaje del instrumento de este manual.

PRECAUCIÓN: NO USE UN OBJETO PUNTIAGUDO PARA TOCAR LA PANTALLA DADO QUE PODRÍA DAÑARLA.

Siga los pasos a continuación para personalizar la configuración predeterminada:
1. Toque el ícono MAIN MENU (MENÚ PRINCIPAL).
2. Toque la categoría de configuración apropiada (por ejemplo, configuración de impresión).
3. Toque el parámetro deseado para seleccionarlo.
4. Toque el ícono BACK (VOLVER) para regresar a la pantalla de menú anterior.
5. Toque el ícono BACK (VOLVER) en la pantalla de configuración principal para regresar a la pantalla principal.
Montaje del instrumento (continuación)

Configuración predeterminada (continuación)

Este instrumento se envía de fábrica con la configuración predeterminada. Esta configuración se puede cambiar para adaptarla a las necesidades del operador individual. A continuación se ofrece un resumen de estas configuraciones con las selecciones predeterminadas en negrita. Para personalizar estas configuraciones, siga los pasos especificados en Montaje del instrumento: configuración predeterminada en la página 12.

Opciones de configuración

Este instrumento tiene la siguiente configuración predeterminada:

Configuración del tonómetro: (página 15)

Presión: mmHg, kPa

Promedio: **Intelligent**, Straight

Configuración de impresión: (página 15)

Formato de fecha: MDY, DMY, YMD

Formato de hora: AM/PM, 24 HR

Fecha: 12/18/2007

Hora: 05:00PM

Impresora: On, Off

Práctica: **Reichert**

Configuración del puerto de comunicación: (página 16)

Baudios: 2400, 4800, 9600, **19200**

Paridad: None, Even, Odd

Bits de datos: 7, 8

Bits de detención: 1, 2

Configuración general: (página 17)

Idioma: Eng, Fra, Deu, Esp, Por, Ita

Tonos: **ON**, OFF

Suspensión: 5, 10, 15, 20, Off

Brillo: * * * * * * * * * *

Denominación del ojo: **Right/Left**, OD/OS
Montaje del instrumento (continuación)

Configuración del tonómetro

Las siguientes opciones están disponibles en el menú de configuración del tonómetro:

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Opciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE (PRESIÓN)</td>
<td>Elija mmHg (milímetros de mercurio) o kPa (kilopascales).</td>
</tr>
<tr>
<td>MEASUREMENTS (MEDICIÓN)</td>
<td>Elija 3 o 4 mediciones para la función del botón de medición múltiple.</td>
</tr>
<tr>
<td>AVERAGING (PROMEDIO)</td>
<td>Elija el promedio Intelligent (inteligente) o Straight (directo). Consulte la sección Resultados de medición de este manual.</td>
</tr>
<tr>
<td>SHOW (MOSTRAR)</td>
<td>Elija mostrar una, dos o las tres opciones. Las opciones son IOPg, IOPcc y CH. Consulte la sección de Resultados de medición de este manual.</td>
</tr>
</tbody>
</table>

Nota: se debe seleccionar al menos una. No es posible desactivar las tres a la vez.
Configuración de impresión

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Opciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINTER (IMPRESORA)</td>
<td>Opción que configura la impresora para imprimir (ON) o no imprimir (OFF) cuando se toca el ícono PRINT (IMPRIMIR).</td>
</tr>
<tr>
<td>DATE FORMAT (FORMATO DE FECHA)</td>
<td>Elija el formato de fecha que se mostrará en el papel de impresora: D = día, M = mes, Y = año.</td>
</tr>
<tr>
<td>TIME FORMAT (FORMATO DE HORA)</td>
<td>Elija el formato de hora: AM/PM o 24 HR.</td>
</tr>
<tr>
<td>DATE (FECHA)</td>
<td>Cambie la fecha actual. Toque para seleccionar el campo de la fecha y use los íconos PLUS (+) (MÁS) o MINUS (-) (MENOS) para modificar el valor.</td>
</tr>
<tr>
<td>TIME (HORA)</td>
<td>Cambie la hora actual. Toque para seleccionar el campo de la hora y use los íconos PLUS (+) (MÁS) o MINUS (-) (MENOS) para modificar el valor.</td>
</tr>
<tr>
<td>PRACTICE (PRÁCTICA)</td>
<td>Se pueden imprimir hasta 29 caracteres (letras y números) al pie del papel de impresión. Para cambiar los caracteres, use los íconos PLUS (MÁS) y MINUS (MENOS) para recorrer el alfabeto. Una vez que haya encontrado la letra que necesita, toque los íconos RIGHT (DERECHA) o LEFT (IZQUIERDA) para moverse en sentido horizontal a la siguiente letra. Para salir, toque el ícono SELECT (SELECCIONAR) y luego el ícono RETURN (VOLVER).</td>
</tr>
</tbody>
</table>
Montaje del instrumento (continuación)

Configuración del puerto de comunicación

El Ocular Response Analyzer G3 puede transferir datos a un dispositivo externo, como una computadora, a través del puerto RS232C.

Las siguientes opciones están disponibles en el menú de configuración de comunicaciones:

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Opciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAUD (BAUDIOS)</td>
<td>Índice de transmisión serial de datos que transfiere en bits por segundo (bps).</td>
</tr>
<tr>
<td>PARITY (PARIDAD)</td>
<td>Bits agregados a la transmisión de datos que se utilizan para detectar errores de transmisión. Las opciones disponibles son None (Ninguna), Even (Par) u Odd (Impar).</td>
</tr>
<tr>
<td>DATA BITS (BITS DE DATOS)</td>
<td>Cantidad de bits que componen la señal de transmisión de datos. Usualmente son entre 7 y 8 bits de largo.</td>
</tr>
<tr>
<td>STOP BITS (BITS DE DETENCIÓN)</td>
<td>Cantidad de bits agregados al final de la señal de transmisión de datos para indicar el fin de la transmisión. Usualmente son entre 1, 1,5 y 2 bits de largo.</td>
</tr>
</tbody>
</table>
Montaje del instrumento (continuación)

Configuración general

Las siguientes opciones están disponibles en el menú de configuración general:

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Opciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANGUAGE (IDIOMA)</td>
<td>Configura el idioma que aparece en la pantalla del operador.</td>
</tr>
</tbody>
</table>
| TONE (TONO) | Configura el indicador de tono audible (“pitido”) para que sea audible (ON) o para que esté en silencio (OFF).
 Nota: cada vez que realice una selección en la pantalla táctil, sonará un pitido si la opción se configura en "ON". |
| SLEEP (SUSPENSIÓN) | Configura el lapso de tiempo (5, 10, 15, 20 minutos u OFF) durante el cual el instrumento permanecerá inactivo antes de entrar en el modo de “suspensión” (en el modo de “suspensión”, la pantalla del operador queda en blanco). Para iluminar (“activar”) la pantalla del operador una vez activado el modo de “suspensión”, toque la pantalla.
 Nota: cuando la unidad se active, aparecerán las mediciones no borradas antes de la activación del modo de suspensión, pero los botones de medición estarán desactivados para evitar la mezcla accidental de datos de dos pacientes diferentes. Deben imprimirse o borrarse las mediciones previas antes de tomar nuevas lecturas. |
| BRIGHTNESS (BRILLO) | Ajuste el brillo de la pantalla del operador tocando el nivel deseado. |
| EYE TITLE (DENOMINACIÓN DEL OJO) | Seleccione Right/Left (Derecha/Izquierda) u OD/OS. |
Instrucciones de uso

Definiciones e interpretación de los valores de medición

- **IOPcc**: IOP corneal compensada. Medición de la IOP de Goldmann que tiene en cuenta las propiedades biomecánicas de la córnea y proporciona una indicación de la presión intraocular menos influenciada por las propiedades, como la viscoelasticidad y el grosor corneal.
- **CH**: la histéresis corneal es una función de amortiguación viscoelástica de la córnea que refleja la capacidad del tejido corneal para absorber y disipar la energía. Es un indicativo de las propiedades biométricas.
- **IOPg**: IOP de Goldmann. La IOPg está correlacionada con los resultados obtenidos de un tonómetro de aplanamiento de Goldmann (GAT) debidamente calibrado, operado por un experto.
- **Puntaje de onda**: el puntaje de onda es un indicador de la confiabilidad de la medición en una escala del 0 al 10 (donde 0 es el puntaje más bajo y 10 el más alto). Cuanto más alto es el puntaje de onda, más confiables son los datos de medición. Si el puntaje de onda es inferior a 3, la medición aparecerá en color anaranjado en la pantalla. Es recomendable que realice una medición adicional.

Nota: cuando la IOPcc es más alta que la IOPg, indica que es posible que la IOP del paciente esté infravalorada por métodos tradicionales, como la tonometría. Cuando la IOPcc es más baja que la IOPg, indica que es posible que la IOP del paciente esté sobrevalorada por métodos tradicionales, como la tonometría.

Encendido

Cuando se conecta el Ocular Response Analyzer G3 al suministro de energía, la unidad realiza una comprobación inicial del sistema. Durante la comprobación del sistema, la unidad emite un soplo. Una vez finalizada la comprobación del sistema, se mostrará la pantalla principal.

Nota: la unidad emitirá un soplo durante la secuencia de encendido.
Instrucciones de uso (continuación)

Alineación y medición

Desde esta pantalla, los operadores pueden optar por entrar en MAIN MENU (MENÚ PRINCIPAL), hacer una demostración del soplo de aire al paciente o comenzar el proceso de medición. Para medir, mueva el apoyo de la frente completamente a la izquierda o la derecha hasta que se fije en su posición.

Soplo de demostración

Al pulsar el icono DEMO PUFF (SOPLO DE DEMOSTRACIÓN), se inicia un soplo de aire de demostración. Esto puede usarse para mostrar el soplo de aire al paciente. Sugiera al paciente que coloque la mano frente a la pieza del extremo a unos 7 cm para sentir el soplo de aire. Cada vez que presiona el icono DEMO PUFF (SOPLO DE DEMOSTRACIÓN) y se emite el soplo de aire, se lleva a cabo una verificación interna de los sistemas del Ocular Response Analyzer G3 para garantizar el rendimiento óptimo del instrumento.

Nota: el icono DEMO PUFF (SOPLO DE DEMOSTRACIÓN) no se mostrará si hay datos de medición en la pantalla.

Si el apoyo de la frente no está en posición, los iconos estarán inactivos y se mostrará el mensaje de la imagen a continuación.

El lado que está listo para medir se torna azul, lo que indica que la unidad está lista para medir el ojo.

Nota: el icono DEMO PUFF (SOPLO DE DEMOSTRACIÓN) no se mostrará si hay datos de medición en la pantalla.
El Ocular Response Analyzer G3 presenta un apoyo de la frente que puede deslizarse hacia la derecha o la izquierda y permite que el instrumento determine qué ojo se va a medir. Debe posicionarse completamente hacia un lado o el otro para tomar una medición. Coloque el apoyo de la frente en la posición deseada antes de comenzar el proceso de medición.

Un paciente correctamente posicionado verá con facilidad las señales de fijación. El objetivo de fijación es una luz verde que se encuentra dentro del tubo de aire y está rodeada por un anillo de luces rojas. Para tomar una medición, los pacientes deben mirar fíjamente la luz verde. Si el paciente ve alguna de las luces (verdes o rojas), la posición del paciente es la correcta. Si puede ver las luces rojas, el sistema de alineación automática pondrá a la vista el objetivo de fijación verde. La medición es automática.
Alineación y medición (continuación)

Posicionamiento correcto del paciente
Disponga la altura de la mesa de manera tal que las marcas del ángulo del ojo en los lados del instrumento esté niveladas con los ojos del paciente.

Los pacientes deben inclinarse ligeramente hacia adelante de modo tal que el centro de la frente quede apoyado en el medio de la almohadilla de apoyo de la frente. La cabeza del paciente debe quedar en contacto directo con el soporte para la cabeza, perpendicular al frente del instrumento (no girada hacia un lado). Asegúrese de que el mentón del paciente no esté muy alejado del instrumento; de lo contrario, el sistema de alineación no alcanzará el ojo.

Observe la foto de la derecha. Note la distancia entre el mentón del paciente y el frente del instrumento. El instrumento está demasiado bajo y hace que el paciente apoye la cabeza de modo tal que apunta hacia abajo. En este caso, es posible que el paciente no vea el objetivo de fijación y que el sistema de alineación no encuentre el ojo del paciente.
Instrucciones de uso (continuación)

Alineación y medición (continuación)

Para tomar una medición, simplemente toque uno de los iconos de medición.

- Al tocar el ícono SINGLE MEASURE (MEDICIÓN ÚNICA), se iniciará la medición con un soplo.
- Al tocar el ícono MULTI MEASURE (MEDICIÓN MÚLTIPLE), se iniciará la medición con tres o cuatro soplos consecutivos, según la configuración del menú.

Nota: entre cada medición, la unidad se alineará brevemente con el ojo y luego hará la medición.

Nota: para garantizar resultados rápidos y precisos, los operadores deben indicar al paciente que parpadee algunas veces y mantenga ambos ojos abiertos inmediatamente antes de la medición. Recuerde al paciente que debe mirar directamente a la luz verde y permanecer quieto.
Instrucciones de uso (continuación)

Alineación y medición (continuación)

Durante el proceso de alineación y medición, la pantalla del operador mostrará la posición del tubo de aire respecto del centro de la córnea del paciente. A medida que el sistema de posicionamiento se alinee con el vértice del ojo, el ícono de medición se moverá hacia el centro de la pantalla y se alineará sobre el centro del gráfico del ojo. Una vez que el sistema de posicionamiento esté alineado, se emitirá un soplo de aire en el ojo y se mostrarán automáticamente los resultados de la medición.

Nota: si el instrumento no pudiera alinearse adecuadamente con el ojo del paciente para tomar una medición (por ejemplo, se alinea pero nunca toma la lectura), tal vez sea necesario pedir al paciente que:

- Permanezca quieto e intente no moverse ni pestañear con frecuencia.
- Abra más los ojos.
- Reubique la cabeza según las instrucciones indicadas en la pantalla.
Conteo de mediciones
Los iconos de los ojos debajo de las denominaciones de los ojos (derecho/izquierdo u OD/OS) se rellenarán para indicar la cantidad de mediciones realizadas.

Cuando use la función de medición única, se llenará el icono de un ojo después de cada medición. Si se llevan a cabo más de 3 mediciones individuales en el mismo ojo, los tres iconos de los ojos permanecerán llenos y los resultados de las mediciones seguirán actualizándose sobre la base de la metodología de promedios descrita en la sección Resultados de medición de este manual.

Cuando use la función de medición múltiple, todos los iconos de los ojos se rellenarán una vez completado el proceso de medición.

Si vuelve a pulsar el botón de medición múltiple, obtendrá un nuevo juego de mediciones que reemplazará los datos almacenados para el ojo medido.
Resultados de medición

Promedio inteligente de datos
El Ocular Response Analyzer G3 usa un sistema de promedio inteligente, basado en el puntaje de onda, que garantiza la visualización de mediciones más confiables. El sistema funciona de la siguiente manera:

Mediciones únicas
Si se toma una medición única en un ojo, la IOPcc, la CH, la IOPg y el puntaje de dicha medición se muestran independientemente del puntaje de onda. Si el puntaje de onda es bajo, deberá tomarse otra medición.

Mediciones múltiples en el modo de promedio inteligente
Si se toman mediciones múltiples en un ojo, el resultado que se muestre será un promedio de las mediciones con puntajes de onda que no tengan más de 1 número de diferencia respecto del puntaje más alto obtenido. Cualquier medición en una serie de mediciones con un puntaje de onda que tenga más de 1 número por debajo del puntaje de onda más alto será descartado. Los resultados de cualquier medición que produzcan un puntaje que tenga más de 1 número por encima de las demás mediciones obtenidas se mostrarán sobre la base de este resultado exclusivamente.

Nota: el proceso de promedio inteligente actualiza los resultados que se muestran en "tiempo real". Los resultados de cada medición en una serie de mediciones no se muestran individualmente.

Promedio directo de datos
Cuando se selecciona la opción de promedio directo en el menú de configuración, el resultado que se muestra será un promedio de todas las mediciones, independientemente del puntaje.

Mediciones múltiples con el botón de medición múltiple
Cuando se utiliza el modo de medición múltiple, el resultado que se muestra es un promedio directo. Si se vuelve a pulsar el botón de medición múltiple, el proceso vuelve a comenzar, borrando las mediciones anteriores y sustituyendo los valores almacenados para dicho ojo.

Mediciones múltiples con el botón de medición única
Cuando se toman mediciones múltiples con el botón de medición única, los resultados que se muestran continúan actualizándose en función del promedio directo de todas las mediciones hasta la cantidad seleccionada en el menú de configuración del tonómetro (3 o 4).

Una vez alcanzada la cantidad máxima de mediciones (3 o 4), una medición adicional reemplazará la medición con el menor puntaje de onda, de manera que solo se promediarán 3 o 4 mediciones. Cada medición posterior continuará reemplazando el puntaje de onda más bajo.
Instrucciones de uso (continuación)

Resultados de medición (continuación)

Ejemplos: promedio inteligente
Consulte la tabla a continuación para ver algunos escenarios que demuestran cómo el proceso de promedio inteligente determina el resultado que se muestra.

<table>
<thead>
<tr>
<th></th>
<th>Medición A</th>
<th>Medición B</th>
<th>Medición C</th>
<th>Medición D</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPcc individual</td>
<td>17,5</td>
<td>11,0</td>
<td>16,0</td>
<td>16,5</td>
</tr>
<tr>
<td>IOPg individual</td>
<td>13,0</td>
<td>8,0</td>
<td>12,0</td>
<td>12,7</td>
</tr>
<tr>
<td>CH individual</td>
<td>12,0</td>
<td>9,8</td>
<td>12,4</td>
<td>11,2</td>
</tr>
<tr>
<td>Puntaje individual</td>
<td>9,5</td>
<td>3,0</td>
<td>9,0</td>
<td>8,5</td>
</tr>
<tr>
<td>IOPcc mostrada</td>
<td>17,5</td>
<td>17,5</td>
<td>16,8</td>
<td>16,7</td>
</tr>
<tr>
<td>IOPg mostrada</td>
<td>13,0</td>
<td>13,0</td>
<td>12,5</td>
<td>12,6</td>
</tr>
<tr>
<td>CH mostrada</td>
<td>12,0</td>
<td>12,0</td>
<td>12,2</td>
<td>11,8</td>
</tr>
<tr>
<td>Puntaje mostrado</td>
<td>9,5</td>
<td>9,5</td>
<td>9,3</td>
<td>9,0</td>
</tr>
</tbody>
</table>

Medición A: toma de una medición única
La primera medición da un buen puntaje. Como fue la única medición tomada, los resultados que se muestran se basan en esta medición.

Medición B: toma de una medición adicional luego de la medición A
Se toma una segunda medición que resulta en un puntaje individual de más de 1 número por debajo de la medición A. Como tal, el sistema de promedio inteligente descarta este valor y los resultados que se muestran siguen iguales.

Medición C: toma de una tercera medición luego de la medición B
Se toma una tercera medición que resulta en un puntaje individual que tiene una diferencia de no más de 1 respecto al puntaje más alto (medición A). Los resultados mostrados son ahora un promedio de la medición A y la medición C. Los valores mostrados se actualizan en tiempo real, de modo tal que el operador nunca ve los resultados individuales de la medición C.

Medición D: toma de una cuarta medición luego de la medición C
Se toma una cuarta medición que resulta en un puntaje que tiene una diferencia de no más de 1 respecto al puntaje más alto (medición A). Los resultados mostrados son ahora un promedio de las mediciones A, C y D. Los valores mostrados se actualizan en tiempo real, de modo tal que el operador nunca ve los resultados individuales de la medición D.

Nota: si se usa la función de medición triple para obtener los resultados A, B y C, el proceso finaliza después del resultado C. Si pulsa una vez más el botón de medición triple, se borrarán los resultados y se reiniciará el proceso. Una única medición adicional seguirá actualizando los resultados en función de la técnica de promedio.

Nota: es importante borrar los resultados de la pantalla luego de concluir con un paciente para evitar “mezclar” los resultados de las mediciones de un paciente con los de otro.

Nota: si la unidad se coloca en el modo de suspensión, deben imprimirse, transferirse o borrarse todas las mediciones que no se hayan borrado antes de activar el modo de suspensión previo a la toma de nuevas lecturas.
Resultados de medición (continuación)

Ejemplos: promedio directo
Consulte la tabla a continuación para ver algunos escenarios que demuestran cómo el proceso de promedio directo determina el resultado que se muestra.

<table>
<thead>
<tr>
<th></th>
<th>Medición A</th>
<th>Medición B</th>
<th>Medición C</th>
<th>Medición D</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPcc individual</td>
<td>17,5</td>
<td>11,0</td>
<td>16,0</td>
<td>16,5</td>
</tr>
<tr>
<td>IOPg individual</td>
<td>13,0</td>
<td>8,0</td>
<td>12,0</td>
<td>12,7</td>
</tr>
<tr>
<td>CH individual</td>
<td>12,0</td>
<td>9,8</td>
<td>12,4</td>
<td>11,2</td>
</tr>
<tr>
<td>Puntaje individual</td>
<td>9,5</td>
<td>3,0</td>
<td>9,0</td>
<td>8,5</td>
</tr>
<tr>
<td>IOPcc mostrada</td>
<td>17,5</td>
<td>14,3</td>
<td>14,8</td>
<td>15,3</td>
</tr>
<tr>
<td>IOPg mostrada</td>
<td>13,0</td>
<td>10,5</td>
<td>11,0</td>
<td>11,4</td>
</tr>
<tr>
<td>CH mostrada</td>
<td>12,0</td>
<td>10,9</td>
<td>11,4</td>
<td>11,3</td>
</tr>
<tr>
<td>Puntaje mostrado</td>
<td>9,5</td>
<td>6,3</td>
<td>7,2</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Medición A: toma de una medición única
La primera medición da un buen puntaje. Como fue la única medición tomada, los resultados que se muestran se basan en esta mediación.

Medición B: toma de una medición adicional luego de la medición A
Se toma una segunda medición. Se promedian y muestran las dos mediciones.

Medición C: toma de una tercera medición luego de la medición B
Se toma una tercera medición. Se promedian y muestran las tres mediciones.

Medición D: toma de una cuarta medición luego de la medición C
Se toma una cuarta medición. Se promedian y muestran las cuatro mediciones.

Nota: es importante borrar los resultados de la pantalla luego de concluir con un paciente para evitar “mezclar” los resultados de las mediciones de un paciente con los de otro.

Nota: si la unidad se coloca en el modo de suspensión, deben imprimirse, transferirse o borrarse todas las mediciones que no se hayan borrado antes de activar el modo de suspensión previo a la toma de nuevas lecturas.

Nota: una vez alcanzada la cantidad máxima de mediciones (3 o 4), una medición adicional reemplazará la medición con el menor puntaje de onda, de manera que solo se promediarán 3 o 4 mediciones. Cada medición posterior continuará reemplazando el puntaje de onda más bajo.
Instrucciones de uso (continuación)

Resultados de medición (continuación)

IOPcc, IOPg o CH
Se mostrarán las opciones que se hayan seleccionado en la configuración del tonómetro del menú de configuración. Los demás valores estarán ocultos. De todas formas, se pueden ver los resultados de los valores ocultos para la medición actual pulsando el campo de dicho valor. Al pulsar el campo de nuevo, se volverá a ocultar.

Nota: no se puede ocultar un valor que se haya seleccionado en la configuración del tonómetro.

Se imprimirán y exportarán los valores mostrados, independientemente de lo que se haya seleccionado en la configuración del tonómetro.

Una vez que se borren los datos y se tome otra lectura, los resultados mostrados serán aquellos que se hayan seleccionado en la configuración del tonómetro.
Instrucciones de uso (continuación)

Medición del siguiente ojo

En este punto, hay varias opciones disponibles:

a. Puede deslizar el apoyo de la frente hacia el lado opuesto para seguir tomando mediciones en el otro ojo.
b. Puede borrar todos los datos y tomar mediciones adicionales del mismo ojo (toque el ícono CLEAR (BORRAR)).
c. Puede imprimir los datos tocando el ícono PRINT (IMPRIMIR).

Nota: el instrumento imprimirá los datos de ambos ojos si toca el ícono PRINT (IMPRIMIR) después de medir los dos ojos.

Nota: siempre se deben imprimir o borrar los datos de medición luego de completar la medición de un paciente. Si se dejan las lecturas en la pantalla puede darse lugar a una “mezcla” de los datos cuando se mida al siguiente paciente.

Nota: si la unidad se coloca en el modo de suspensión, deben imprimirse, transferirse o borrarse todas las mediciones que no se hayan borrado antes de activar el modo de suspensión previo a la toma de nuevas lecturas.
Instrucciones de uso (continuación)

Modo de suspensión

La unidad entrará en el modo de suspensión después del lapso de tiempo especificado en el menú de configuración. Cuando la unidad se active, aparecerán en la pantalla las mediciones no borradas antes de la activación del modo de suspensión, pero los botones de medición estarán desactivados para evitar la mezcla accidental de datos de dos pacientes diferentes.

Si bien los botones de medición estarán desactivados, el botón de análisis seguirá funcionando, por lo que podrá ver los datos.

Si aparecen los botones de medición desactivados, imprima, transfiera o bórre los datos antes de tomar nuevas lecturas.
Instrucciones de uso (continuación)

Puntajes de onda bajos

El Ocular Response Analyzer G3 usa un proceso de “puntaje” de señal avanzado para determinar objetivamente la confiabilidad de los datos medidos. En una escala de 0 a 10, cuanto mayor el puntaje, más confiable son los datos medidos.

Cualquier valor de medición identificado con un “puntaje de onda bajo” se indicará en texto anaranjado en el gráfico de barras debajo de las mediciones. Tome mediciones adicionales para reemplazar los puntajes de onda bajos.

Nota: es posible que los ojos que se hayan sometido a una cirugía refractiva y los ojos con patologías produzcan puntajes de medición consistentemente bajos. Los valores basados en los puntajes más altos obtenibles deben considerarse confiables.
Instrucciones de uso (continuación)

Pantallas de análisis

Al tocar el icono ANALYSIS (ANÁLISIS) verá la pantalla de análisis. En la pantalla de análisis podrá visualizar el histograma de CH y las ondas del ojo derecho e izquierdo.

Nota: cuando se muestra un gráfico, el icono se desactiva debido al gráfico actual y aparece como botón inactivo. Solo los iconos que pueden seleccionarse están en azul.

Histograma de CH

El histograma de CH muestra la distribución de valores de CH de la población normal y los resultados de la CH del paciente medido respecto de dicha distribución* normal.

* La población de referencia consta de 840 ojos (340 masculinos y 500 femeninos) para la CH medida entre 2002 y 2003. La composición étnica de la población es la siguiente: 18 afroamericanos, 264 asiáticos, 496 hispanos y 62 caucásicos. No se establecieron valores “de corte” mínimos o máximos para la histéresis o la IOP en la población de referencia. Los valores observados de la histéresis corneal y la IOP van de 4 a 18 mmHg y 6 a 26 mmHg respectivamente. La inferencia de valores fuera de este rango es especulativa.
Instrucciones de uso (continuación)

Pantallas de análisis (continuación)

Señal de medición de OD/OS

Las señales de medición basadas en el mejor puntaje de onda obtenido pueden verse tocando el icono correspondiente, sea OD u OS. Las señales muestran la curva de aplanamiento (línea roja) y la curva de presión (línea verde).

El Ocular Response Analyzer G3 toma mediciones por aplanamiento de la córnea con soplo de aire y supervisa la forma de la córnea mediante un sistema de detección óptico electrónico. Se muestra la onda producida como resultado del proceso de medición.

Las curvas ilustradas son las siguientes:
- La curva verde representa la presión del aire en la córnea.
- La curva roja indica la señal del sistema de detección de aplanamiento.

La señal óptica recopilada durante los eventos de aplanamiento interno y externo causan los dos “picos” a cada lado de la curva de presión. La presión de aplanamiento está determinada por una línea descendente que va desde el pico de cada aplanamiento hasta la intersección de la curva de presión verde. La presión de aplanamiento externo siempre ocurrirá en una posición más baja en la curva de presión que la presión de aplanamiento interno debido a la histéresis corneal (CH). Las córneas con histéresis más altas causan una mayor discrepancia en la desalineación vertical de estos dos puntos de presión.

La curva verde de presión siempre será bastante simétrica. La altura de la curva variará según la cantidad de presión requerida para aplanar un ojo en particular. Los ojos con presión intraocular alta generarán una curva más alta.

La curva de señal de aplanamiento roja puede variar significativamente de apariencia entre mediciones. Lo ideal sería que la amplitud (altura) de los picos de aplanamiento estén por encima de la curva verde. Ambos picos deben tener un punto claramente definido y relativamente bien centrado. Los picos deben ser similares en amplitud (raramente serán idénticos). En ojos normales, las señales serán simétricas y estarán relativamente libres de “ruído”.

Las señales de medición de OD/OS
Instrucciones de uso (continuación)

Mensajes de error de posicionamiento

Si el paciente no está correctamente posicionado, es posible que el Ocular Response Analyzer G3 no se alinee ni tome mediciones. Si esto ocurriera, la pieza del extremo regresará a la posición inicial y la pantalla mostrará un mensaje de error con el motivo de la medición incompleta.

Si surgiera esta situación, pida al paciente que se vuelva a posicionar y proceda con la siguiente medición.
Instrucciones de uso (continuación)

Impresión de datos de medición

Toque el icono PRINT (IMPRIMIR) para imprimir una copia en papel de los datos de medición o imprima los datos de medición a través del puerto RS232C. A continuación se muestra un modelo de impresión.

Nota: solo se imprimirán los valores mostrados. No se imprimirán los valores ocultos.

![Modelo de impresión]

Si decide no imprimir, toque el icono CLEAR DATA (BORRAR DATOS). Esto borrará todos los datos de la memoria y la pantalla. El instrumento ahora está listo para el siguiente paciente.
Limpieza y mantenimiento

Fusibles

ADVERTENCIA: DESCONECTE LA ALIMENTACIÓN ANTES DE INTENTAR RETIRAR LOS FUSIBLES; DE LO CONTRARIO, PODRÍAN PRODUCIRSE LESIONES O INCLUSO LA MUERTE.

Reemplace los fusibles en el módulo de entrada de alimentación con los fusibles indicados en la sección Especificaciones de este manual.

1. Desconecte la alimentación de entrada del instrumento.
2. Presione la lengüeta en el centro del módulo de entrada de alimentación para liberar el portafusibles. Vea el punto 1.
3. Retire el portafusibles del módulo de entrada. Vea el punto 2.
5. Coloque el portafusibles en el módulo de entrada de alimentación hasta que encaje en su lugar.

Ubicación de los fusibles

Limpieza externa

Limpie las superficies externas de este instrumento con un paño limpio y suave humedecido con una solución de detergente suave (1 cc de detergente para vajilla líquido en un litro de agua limpia y filtrada (a menos de 5 micrones)).

Limpieza del apoyo de la frente

Por motivos de higiene, se puede limpiar el apoyo de la frente con un paño limpio humedecido con una solución de detergente suave (1 cc de detergente líquido para vajilla en un litro de agua limpia y filtrada (a menos de 5 micrones)) o un paño con alcohol estéril (isopropilo o etanol).

Nota: se pueden comprar almohadillas de repuesto para el apoyo de la frente a través del distribuidor local autorizado de Reichert con el N/P 16050-170.

Limpieza de la pantalla del operador

Use un paño limpio y suave con detergente neutro, isopropilo o etanol para limpiar la pantalla del operador. No use ningún solvente químico, solución ácida ni alcalina.

Papel de impresora

Para cambiar el papel de impresora, retire la puerta de papel de impresora para exponer el compartimiento de papel de impresora. Retire el rollo de cartón y coloque un nuevo rollo de papel térmico dentro del compartimiento de papel de impresora, como se muestra a continuación. Para pedir papel térmico de repuesto, llame a su distribuidor local y pida papel de repuesto Reichert.
Limpieza y mantenimiento (continuación)

Limpieza de las ventanas de posicionamiento y los tubos de aire

ADVERTENCIA: PARA REDUCIR EL RIESGO DE LESIÓN, ASEGÚRESE DE QUE NINGÚN PACIENTE NI OTRA PERSONA ESTÉN MIRANDO POR EL TUBO DE AIRE DURANTE EL PROCEDIMIENTO DE LIMPIEZA.

PRECAUCIÓN: NO USE SOLVENTES O SOLUCIONES DE LIMPIEZA FUERTES EN LAS VENTANAS DE ALINEACIÓN, YA QUE PODRÍA DAÑARLAS.

Cuando las ventanas de posicionamiento o las ventanas de aplanamiento se obstruyen con contaminantes, se degrada la señal de posicionamiento. Cuando se degrada la señal, es posible que el sistema no reconozca ni se posicione en el centro del ojo. En consecuencia, el instrumento no encontrará el centro del ojo o se alineará descentradamente, lo que puede impedir que la unidad tome una medición o genere lecturas con puntajes de onda bajos.

Cada 30 días, una visualización en pantalla recordará al usuario que limpie el instrumento.

Nota: en cualquier momento durante la limpieza, presione el icono DEMO PUFF (SOPLO DE DEMOSTRACIÓN) para iniciar un soplo único.

1. Pulse el icono SELECT (SELECCIONAR) para ingresar en el modo de limpieza si aparece el recordatorio o ingrese en el modo de limpieza en cualquier momento desde la pantalla principal presionando el icono MAIN MENU (MENÚ PRINCIPAL) y seleccione el procedimiento de limpieza.

Nota: si el usuario no ingresa al modo de limpieza después del recordatorio de 30 días pulsando el icono BACK (VOLVER), se reiniciará el conteo del recordatorio de 30 días.

2. La pieza del extremo se puede adelantar para una limpieza más fácil.
3. Ubique las ventanas de posicionamiento y las ventanas de aplanamiento y repase las superficies exteriores con un hisopo de mango largo de algodón limpio humedecido con una solución limpiadora de lentes o alcohol (isopropilo o etanol).
4. Retire todo el polvo o las partículas extrañas restantes con aire comprimido limpio y seco a menos de 90 psig (620 kPa).
5. Deslice un limpiador de tubos dentro y fuera del tubo de aire repetidas veces para quitar los contaminantes del interior del tubo de aire.

PRECAUCIÓN: ASEGÚRESE DE QUE NO QUEDE NINGÚN LIMPIADOR DE TUBOS NI NINGÚN OTRO OBJETO DENTRO DEL TUBO DE AIRE ANTES DE QUE EL INSTRUMENTO EMITA UN SOPLO.

6. Una vez completada la limpieza, presione el icono SELECT (SELECCIONAR) y el Ocular Response Analyzer G3 iniciará una serie de soplos para limpiar los posibles contaminantes del tubo de aire y la pieza del extremo regresará a la posición normal.
Reemplazo de la almohadilla de apoyo de la frente

El Ocular Response Analyzer G3 cuenta con una almohadilla de apoyo de la frente desmontable para facilitar su reemplazo.

En la parte inferior de la almohadilla de apoyo de la frente hay una pequeña muesca que permite tomar la almohadilla con los dedos. Consulte la Figura CL-1.

Nota: asegúrese de presionar firmemente para que la nueva almohadilla de apoyo quede bien colocada. De lo contrario, podría caerse.

Nota: si el montaje del soporte para la cabeza es de estilo antiguo y debe reemplazar el soporte para la cabeza, póngase en contacto con Reichert.

Figura CL-1. Muesca de la almohadilla de apoyo de la frente.
Figura CL-2. Tome la almohadilla de apoyo de la frente.
Figura CL-3. Retire la almohadilla de apoyo de la frente.
Figura CL-4. Instale la almohadilla de apoyo de la frente.
Solución de problemas

Pantalla de ayuda

Para acceder al menú HELP (AYUDA), toque el icono MAIN MENU (MENÚ PRINCIPAL) y luego el icono HELP (AYUDA). Esto mostrará la información de contacto de Reichert.

If you have any questions or comments about your instrument, contact your authorized Reichert Technologies distributor or contact Reichert Technologies directly at:

Reichert, Inc.
www.reichert.com

World Headquarters & North American Service Center
Phone: +1-716-686-4500
E-mail: reichert.info@ametek.com

European Service Center
Phone: +49 (89) 315 8911 0
E-mail: info.reichert-de@ametek.com
Solución de problemas (continuación)

Servicio

Para acceder a la pantalla SERVICE (SERVICIO), toque el icono MAIN MENU (MENÚ PRINCIPAL) y luego la línea de menú SERVICE (SERVICIO). Aparecerá la pantalla a continuación.

Histograma de medición

Podrá ver un gráfico que muestra las últimas 400 mediciones de IOPcc, IOPg y CH tocando el icono SERVICE HISTOGRAM (HISTOGRAMA DE SERVICIO). Para recorrer los tres gráficos diferentes (IOPcc, IOPg y CH), toque las flechas RIGHT (DERECHA) y LEFT (IZQUIERDA). Puede imprimir cualquiera de estos datos tocando el icono PRINT (IMPRIMIR).
Solución de problemas (continuación)

Errores relacionados con la impresión

Si la impresora se queda sin papel durante un ciclo de impresión, aparecerá el siguiente mensaje:

![Imagen de mensaje de impresora]

Nota: si el papel de impresora se acaba antes de imprimir todos los datos de medición, se almacenarán los datos. Una vez reemplazado el papel de impresora, se imprimirán todos los datos de medición.

Problemas de fecha y hora

La fecha y la hora se conservan en la memoria gracias a una batería de larga duración (batería de botón de litio CR 2032). Esta batería de larga duración dura muchos años. Si la fecha y la hora no funcionan, póngase en contacto con Reichert (consulte la sección Introducción de este manual).
Solución de problemas (continuación)

Tabla de errores comunes

La siguiente tabla proporciona detalles de problemas comunes y soluciones para el Ocular Response Analyzer G3.

<table>
<thead>
<tr>
<th>Definición</th>
<th>Causa probable</th>
<th>Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pantalla en blanco.</td>
<td>La unidad está en modo de suspensión.</td>
<td>Toque la pantalla.</td>
</tr>
<tr>
<td></td>
<td>El interruptor ON/OFF (encendido/apagado) está en OFF.</td>
<td>Pulse "I" en el interruptor ON/OFF (encendido/apagado).</td>
</tr>
<tr>
<td></td>
<td>Los fusibles están quemados.</td>
<td>Reemplace los fusibles quemados (consulte la sección Limpieza y mantenimiento). Coloque el interruptor ON/OFF (encendido/apagado) en OFF, espere dos minutos y luego colóquelo en ON.</td>
</tr>
<tr>
<td>La pantalla está demasiado atenuada.</td>
<td>La configuración del contraste es demasiado baja.</td>
<td>Ajuste el brillo en el menú de configuración general.</td>
</tr>
<tr>
<td>El instrumento no responde al tocar un icono.</td>
<td>La pantalla táctil debe recalibrarse.</td>
<td>Reinicie la unidad tocando la pantalla para iniciar la calibración de la pantalla táctil. Pulse el “punto azul” que aparece en la pantalla en distintas ubicaciones para recalibrar la pantalla táctil.</td>
</tr>
<tr>
<td>Aparece el mensaje: “No se puede ubicar el ojo”.</td>
<td>El paciente no está mirando la luz LED verde de fijación.</td>
<td>Indique al paciente que busque la luz LED verde y que se mueva hacia el soporte para la cabeza.</td>
</tr>
<tr>
<td>La unidad no encuentra el ojo (avanza hasta el final y luego se devuelve).</td>
<td>Las ventanas de posicionamiento o aplanamiento están sucias.</td>
<td>Limpie las ventanas de posicionamiento o aplanamiento (consulte la sección Mantenimiento de este manual).</td>
</tr>
<tr>
<td></td>
<td>La luz exterior confunde al sistema de posicionamiento.</td>
<td>Aísle las fuentes de luz exterior (como luz incandescente o infrarroja) y elimine la fuente de luz.</td>
</tr>
<tr>
<td>Encuentra un ojo pero no el otro. Interferencia infrarroja.</td>
<td>Interferencia de luz en el lado de medición.</td>
<td>Elimine la interferencia (por ejemplo, la fuente de luz infrarroja).</td>
</tr>
<tr>
<td>La unidad no toma la lectura.</td>
<td>El paciente no se queda quieto.</td>
<td>Anime al paciente a quedarse quieto.</td>
</tr>
<tr>
<td></td>
<td>El ojo del paciente está demasiado lejos de la ventana del paciente.</td>
<td>Pida al paciente que se acerque a la pieza del extremo.</td>
</tr>
<tr>
<td></td>
<td>El paciente no se centra en el objetivo (mueve el ojo).</td>
<td>Pida al paciente que mire solo el objetivo.</td>
</tr>
<tr>
<td></td>
<td>El paciente tiene el ojo seco.</td>
<td>Pida al paciente que parpadee.</td>
</tr>
<tr>
<td></td>
<td>Ventanas de posicionamiento sucias.</td>
<td>Limpie las ventanas de posicionamiento (consulte la sección Mantenimiento de este manual).</td>
</tr>
<tr>
<td>No se muestran lecturas de aplanamiento o se muestran puntajes de onda bajos.</td>
<td>Las ventanas de posicionamiento o aplanamiento están sucias.</td>
<td>Limpie las ventanas de posicionamiento o aplanamiento (consulte la sección Mantenimiento de este manual).</td>
</tr>
<tr>
<td>La impresora no imprime.</td>
<td>La impresora no tiene papel.</td>
<td>Reemplace el papel con papel Reichert N/P 12430-887.</td>
</tr>
<tr>
<td></td>
<td>El papel de la impresora está instalado al revés.</td>
<td>Revierta el papel de la impresora.</td>
</tr>
<tr>
<td></td>
<td>No se está usando papel térmico Reichert.</td>
<td>Reemplace el papel con papel Reichert N/P 12430-887.</td>
</tr>
<tr>
<td>Se cayó la almohadilla del apoyo de la frente.</td>
<td>Se ha separado la unión entre la almohadilla del soporte de la frente y el soporte para la cabeza.</td>
<td>Reemplace la almohadilla del apoyo de la frente con el N/P 16050-170. (Consulte la sección Mantenimiento de este manual).</td>
</tr>
</tbody>
</table>
Especificaciones generales

Modelo: 16170 - Ocular Response Analyzer G3

Dimensiones físicas

- **Peso desembalado:** 10,4 kg (23,0 lb)
- **Altura:** 50,2 cm (19,8 pulg.)
- **Ancho:** 26,7 cm (10,5 pulg.)
- **Profundidad:** 35,6 cm (14,0 pulg.)

Especificaciones eléctricas

- **Voltaje:** 100-240 V CA
- **Alimentación:** 60-85 VA
- **Frecuencia:** 50/60 Hz
- **Fusibles:** retardo (2,5 A, 250 V), 5 X 20 mm, RoHS

Rango de medición:

- **IOP:** 7 a 60 mmHg
- **CH:** 0 a la mayor IOP medida

Precisión de la medición:

- **IOP:** ± 1,0 mmHg (7 a 60 mmHg)
- **CH:** ± 1,4 mmHg (0 a la mayor IOP medida)
- **IOPcc:** ± 1,0 mmHg (7 a 60 mmHg)

Nota: la precisión cumple con la norma de tonometría ISO 8612.

Condiciones de funcionamiento

Entorno:

Las condiciones del entorno son las siguientes:

- **Temperatura:** 10 °C (50 °F) a 35 °C (95 °F)
- **Humedad relativa:** 30 % a 90 %
- **Presión atmosférica:** 80 kPa (23,6 pulg. de Hg) a 106 kPa (31,3 pulg. de Hg)

Transporte y almacenamiento:

- **Temperatura:** -40 °C (-40 °F) a +70 °C (158 °F)
- **Humedad relativa:** 10 % a 95 %
- **Presión atmosférica:** 50 kPa (14,8 pulg. de Hg) a 106 kPa (31,3 pulg. de Hg) 50 kPa

Desechos

Este producto no genera ningún residuo peligroso para el medio ambiente. Al final de la vida útil del producto, cumpla con las leyes y ordenanzas locales respecto de la correcta eliminación de este equipo.

Revisión del software

La revisión del software puede adquirirse comunicándose con Reichert Technologies o accediendo a la pantalla de servicio a través del menú principal. El número de serie identifica la fecha de fabricación y brinda acceso a la versión de software.
El Ocular Response Analyzer G3 está clasificado como equipo de Clase I.

Los equipos de Clase I son equipos en los que la protección contra descargas eléctricas no depende exclusivamente del material aislante, sino que incluye una precaución de seguridad adicional en la cual se proporcionan medios para conectar el equipo a un conductor a tierra de protección situado en el cableado fijo de la instalación de manera tal que las piezas metálicas accesibles no se carguen en caso de un fallo del aislamiento básico.

El Ocular Response Analyzer G3 está clasificado como equipo de Tipo B para contacto con el paciente conforme a IEC 60601-1.

El Ocular Response Analyzer G3 está clasificado como equipo IPX0.

El equipo IPX0 es un equipo común sin protección contra el ingreso de agua.

Según el modo de funcionamiento, el Ocular Response Analyzer G3 es un instrumento de funcionamiento continuo.
Tabla 201: orientación y declaración del fabricante

Emisiones electromagnéticas

Todos los equipos y sistemas médicos eléctricos

<table>
<thead>
<tr>
<th>Prueba de emisiones</th>
<th>Normativa</th>
<th>Entorno electromagnético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones de RF conducidas y emitidas CISPR 11</td>
<td>Grupo 1</td>
<td>El ORA G3 utiliza energía de RF solo para su funcionamiento interno. Por lo tanto, sus emisiones de RF son muy bajas y es poco probable que causen interferencias en equipos electrónicos cercanos.</td>
</tr>
<tr>
<td>Emisiones de RF conducidas y emitidas CISPR 11</td>
<td>Clase A</td>
<td>El ORA G3 es adecuado para utilizarse en todos los establecimientos, además de establecimientos domésticos, y en aquellos lugares conectados directamente a la red eléctrica pública de bajo voltaje que suministra energía a edificios con fines domésticos.*</td>
</tr>
<tr>
<td>Distorsión armónica IEC 61000-3-2</td>
<td>Clase A</td>
<td></td>
</tr>
<tr>
<td>Fluctuaciones de voltaje y parpadeos IEC 61000-3-3</td>
<td>Cumple</td>
<td></td>
</tr>
</tbody>
</table>

Nota: *Las características de este equipo en cuanto a las emisiones lo vuelven apto para su uso en áreas industriales y hospitales (CISPR 11, Clase A). Si se utiliza en un entorno residencial (para lo cual normalmente se requiere el cumplimiento con la normativa CISPR 11, Clase B), este equipo tal vez no ofrezca protección adecuada para los servicios de comunicaciones de radiofrecuencia. Es posible que el usuario necesite tomar medidas paliativas, por ejemplo, cambiar la ubicación o la orientación del equipo.*
Tabla 202: orientación y declaración del fabricante

Inmunidad electromagnética

Todos los equipos y sistemas médicos eléctricos

<table>
<thead>
<tr>
<th>Prueba de inmunidad</th>
<th>Nivel de prueba IEC 60601</th>
<th>Nivel de cumplimiento</th>
<th>Entorno electromagnético - Orientación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descarga electrostática</td>
<td>Contacto ±8kV</td>
<td>Contacto ±8kV</td>
<td>Los pisos deben ser de madera, concreto o baldosas de cerámica. Si los pisos son sintéticos, la humedad relativa debe ser de al menos el 30 %.</td>
</tr>
<tr>
<td>IEC 61000-4-2</td>
<td>Aire ±2kV, ±4kV, ±8kV, ±15kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transientes eléctricos rápidos/pulsos</td>
<td>Red eléctrica ±2kV</td>
<td>Red eléctrica ±2kV</td>
<td>La calidad de la red eléctrica debe ser la de un entorno residencial, comercial u hospitalario típico.</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>Líneas E/S ±1kV</td>
<td>Frecuencia de repetición 100kHz</td>
<td></td>
</tr>
<tr>
<td>Sobretensión</td>
<td>Línea a línea ±0,5kV, ±1kV</td>
<td>Diferencial ± 0,5 kV, ± 1 kV, ± 2 kV</td>
<td>La calidad de la red eléctrica debe ser la de un entorno residencial, comercial u hospitalario típico.</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>Línea a tierra ±0,5kV, ±1kV, ±2kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caída de voltaje</td>
<td>0 % Ut; 0,5 ciclos a 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°</td>
<td>0 % Ut; 0,5 ciclos a 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°</td>
<td>La calidad de la red eléctrica debe ser la típica de un entorno residencial, comercial u hospitalario.</td>
</tr>
<tr>
<td>IEC 61000-4-11</td>
<td>0 % Ut; 1,0 ciclo y 70 % Ut; 25/30 ciclos Monofase: a 0°</td>
<td>0 % Ut; 1,0 ciclo y 70 % Ut; 25/30 ciclos Monofase: a 0°</td>
<td></td>
</tr>
<tr>
<td>Interrupciones de voltaje</td>
<td>0 % Ut, 250/300 ciclos</td>
<td>0 % Ut, 250/300 ciclos</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-11</td>
<td></td>
<td></td>
<td>Los campos magnéticos de frecuencia de corriente deben ser los de un entorno residencial, comercial u hospitalario típico.</td>
</tr>
<tr>
<td>Frecuencia de corriente</td>
<td>30A/m 50 Hz o 60 Hz</td>
<td>30A/m 50 Hz o 60 Hz</td>
<td></td>
</tr>
<tr>
<td>50/60 Hz Campo magnético</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El ORA G3 es adecuado para utilizarse en el entorno electromagnético que se especifica a continuación. El cliente o usuario del ORA G3 debe garantizar su uso en dicho entorno.
<table>
<thead>
<tr>
<th>Prueba de inmunidad</th>
<th>Nivel de prueba IEC 60601</th>
<th>Nivel de cumplimiento</th>
<th>Entorno electromagnético - Orientación -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupciones conducidas provocadas por campos de RF IEC 61000-4-6</td>
<td>3 Vrms 150 kHz hasta 80 MHz</td>
<td>(V1) = 3 Vrms 150 kHz hasta 80 MHz</td>
<td>No deben ubicarse equipos de comunicaciones de RF portátiles y móviles, incluidos los cables, a una distancia del ORA G3 menor que la distancia de separación recomendada calculada a partir de la ecuación correspondiente a la frecuencia del transmisor.</td>
</tr>
<tr>
<td></td>
<td>6 Vrms en bandas ISM entre 150 kHz y 80 MHz 80 % AM a 1 KHz</td>
<td>(V1) = 6 Vrms en bandas entre 150 kHz y 80 MHz 80 % AM a 1 KHz</td>
<td>Distancia de separación recomendada:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d = (3,5/V1) (raíz cuadrada de P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d = (3,5/E1) (raíz cuadrada de P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d = (7/E1) (raíz cuadrada de P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80 MHz a 800 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 MHz a 2,7 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P es el valor nominal de salida de corriente máxima del transmisor en vatios (W) conforme al fabricante del transmisor y d es la distancia de separación recomendada en metros (m).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La intensidad de los campos emitida por los transmisores fijos, según lo determinado por un sondeo del sitio electromagnético, debe ser menor que los niveles de cumplimiento normativo en cada intervalo de frecuencia.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se pueden producir interferencias en las proximidades de los equipos marcados con el siguiente símbolo.</td>
</tr>
<tr>
<td>Campos electromagnéticos de RF emitida IEC 61000-4-3</td>
<td>3 V/m 80 MHz hasta 2,7 GHz 80 % AM a 1kHz</td>
<td>(E1) = 3 V/m 80 MHz hasta 2,7 GHz 80 % AM a 1kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 V/m 80 MHz hasta 2,7 GHz 80 % AM a 1kHz</td>
<td>(E1) = 10 V/m 80 MHz hasta 2,7 GHz 80 % AM a 1kHz</td>
<td></td>
</tr>
</tbody>
</table>

Nota 1: a 80 MHz y 800 MHz, se aplica el intervalo de frecuencia más elevado.

Nota 2: es posible que estas pautas no se apliquen en todas las situaciones. La propagación electromagnética se ve afectada por la absorción y el reflejo de estructuras, objetos y personas.

* La intensidad de los campos emitida por transmisores fijos, como bases para radioteléfonos (inalámbricos/celulares) y radios móviles terrestres, equipos de radioaficionados, emisoras de radio AM/FM y emisoras de televisión, no puede predecirse teóricamente con precisión. Para evaluar el entorno electromagnético debido a transmisores de RF fijos, se debe considerar la posibilidad de realizar un sondeo del sitio electromagnético. Se debe observar la intensidad medida de los campos en el sitio donde se colocará el equipo o el sistema médico eléctrico (ME) para verificar su normal funcionamiento. Si se observa un rendimiento anómalo, es posible que deban tomarse mediciones adicionales, tales como la reorientación o reubicación del equipo o sistema médico eléctrico.

* En el rango de frecuencia de 150 kHz a 80 MHz, las intensidades de los campos deben ser menores a [V1] V/m.

* Las bandas ISM (industriales, científicas y médicas) entre 0,15 MHz y 80 MHz son de 6,765 MHz a 6,795 MHz; de 13,553 MHz a 13,567 MHz; de 26,957 MHz a 27,283 MHz, y de 40,66 MHz a 40,70 MHz. Las bandas de equipos de radioaficionados entre 0,15 MHz y 80 MHz son de 1,8 MHz a 2,0 MHz; de 3,5 MHz a 4,0 MHz; de 5,3 MHz a 5,4 MHz; de 7 MHz a 7,3 MHz; de 10,1 MHz a 10,15 MHz; de 14 MHz a 14,2 MHz; de 18,07 MHz a 18,17 MHz; de 21,0 MHz a 21,4 MHz; de 24,89 MHz a 24,99 MHz; de 28,0 MHz a 29,7 MHz, y de 50,0 MHz a 54,0 MHz.
Tabla 206: distancias de separación recomendadas entre equipos de comunicaciones de RF portátiles y móviles para equipos y sistemas médicos eléctricos que NO son de soporte vital.

Orientación y declaración del fabricante: inmunidad electromagnética

El ORA G3 está diseñado para utilizarse en un entorno electromagnético donde la emisión de alteraciones de RF esté controlada. El cliente o usuario del ORA G3 puede ayudar a evitar las interferencias electromagnéticas si mantiene una distancia mínima entre los equipos de comunicaciones de RF portátiles y móviles y el ORA G3, como se recomienda a continuación, conforme a la salida máxima de corriente de los equipos de comunicaciones.

<table>
<thead>
<tr>
<th>Salida máxima de corriente del transmisor (W)</th>
<th>Separación (m) de 150 kHz a 80 MHz fuera de las bandas ISM</th>
<th>Separación (m) de 150 kHz a 80 MHz dentro de las bandas ISM</th>
<th>Separación (m) de 80 MHz a 800 MHz</th>
<th>Separación (m) de 800 MHz a 2,7 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>0,1166</td>
<td>0,1944</td>
<td>0,1166</td>
<td>0,2333</td>
</tr>
<tr>
<td>0,1</td>
<td>0,3689</td>
<td>0,6149</td>
<td>0,3689</td>
<td>0,7378</td>
</tr>
<tr>
<td>1</td>
<td>1,1666</td>
<td>1,9444</td>
<td>1,1666</td>
<td>2,3333</td>
</tr>
<tr>
<td>10</td>
<td>3,6893</td>
<td>6,1489</td>
<td>3,6893</td>
<td>7,3786</td>
</tr>
<tr>
<td>100</td>
<td>11,666</td>
<td>19,4444</td>
<td>11,666</td>
<td>23,3333</td>
</tr>
</tbody>
</table>

En el caso de transmisores con una salida de corriente nominal máxima no mencionada arriba, la distancia de separación recomendada (d) en metros (m) puede calcularse mediante la ecuación correspondiente a la frecuencia del transmisor, donde P es el valor nominal máximo de salida de corriente del transmisor en vatios (W), conforme al fabricante del transmisor.

Nota 1: a 80 MHz y 800 MHz, se aplica la distancia de separación correspondiente al intervalo de frecuencia más elevado.

Nota 2: es posible que estas pautas no se apliquen en todas las situaciones. La propagación electromagnética se ve afectada por la absorción y el reflejo de estructuras, objetos y personas.

Nota 3: los niveles de cumplimiento en las bandas de frecuencia ISM entre 150 kHz y 80 MHz y en el intervalo de frecuencia de 80 MHz a 2,7 GHz tienen por objetivo disminuir la probabilidad de que los equipos de comunicaciones móviles/portátiles causen interferencia si se llevan por accidente a las áreas de pacientes. Por este motivo, se ha incorporado en la fórmula un factor adicional de 10/3 utilizado para calcular la distancia de separación recomendada para transmisores en estos intervalos de frecuencia.
Tablas de orientación (continuación)

<table>
<thead>
<tr>
<th>Prueba de inmunidad</th>
<th>Nivel de prueba IEC 60601</th>
<th>Nivel de cumplimiento</th>
<th>Entorno electromagnético - Orientación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba de frecuencia (MHz)</td>
<td>Banda (MHz)</td>
<td>Servicio (MHz)</td>
<td>Modulación</td>
</tr>
<tr>
<td>385</td>
<td>380-390</td>
<td>TETRA 400</td>
<td>Modulación de pulso 18 Hz</td>
</tr>
<tr>
<td>450</td>
<td>430-470</td>
<td>GMR 460, FRS 460</td>
<td>FM ±5 kHz de desviación del seno de 1 kHz</td>
</tr>
<tr>
<td>710</td>
<td>704-787</td>
<td>Bandas LTE 13, 17</td>
<td>Modulación de pulso 217 Hz</td>
</tr>
<tr>
<td>745</td>
<td>745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>780</td>
<td>780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF emitida iEC 61000-4-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>800-960</td>
<td>GSM 800/900, TETRA 800, IDEN 820, CDMA 450, bandas LTE 1, 3, 4, 25; UMTS</td>
<td>Modulación de pulso 18 Hz</td>
</tr>
<tr>
<td>870</td>
<td>870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>930</td>
<td>930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1720</td>
<td>1700-1990</td>
<td>GSM 1800; CDMA 1900; GSM 1900; DECT; bandas LTE 1, 3, 4, 25; UMTS</td>
<td>Modulación de pulso 217 Hz</td>
</tr>
<tr>
<td>1845</td>
<td>1845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>1970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2450</td>
<td>2400-2570</td>
<td>Bluetooth WLAN, 802.11 b/g/n, RFID 2450, banda LTE 7</td>
<td>Modulación de pulso 217 Hz</td>
</tr>
<tr>
<td>5240</td>
<td>5240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5500</td>
<td>5500</td>
<td>WLAN 802.11 a/n</td>
<td>Modulación de pulso 217 Hz</td>
</tr>
<tr>
<td>6785</td>
<td>6785</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 9: orientación y declaración del fabricante
Inmunidad electromagnética
Inmunidad a campos de proximidad de equipos de comunicaciones inalámbricos de RF

Orientación y declaración del fabricante: inmunidad electrónica

El ORA G3 es adecuado para utilizarse en el entorno electromagnético que se especifica a continuación en relación con campos de proximidad de equipos de comunicaciones inalámbricos de RF.

Prueba de inmunidad

$$d = \frac{6}{E} \sqrt{P}$$

donde

- d = distancia de separación mínima en metros
- E = nivel de prueba de inmunidad en V/m
- P = corriente máxima en vatios (W)
Garantía

Este producto cuenta con la garantía de Reichert Technologies (“Reichert”) contra cualquier defecto en los materiales y la mano de obra en condiciones de uso normal durante un período de un año a partir de la fecha de emisión de la factura del comprador original. (No se considerará comprador original a un distribuidor autorizado). Conforme a esta garantía, la única obligación de Reichert es reparar o reemplazar la pieza o el producto defectuoso a criterio de Reichert.

Esta garantía se aplica a productos nuevos y no a productos que hayan sido manipulados, alterados de cualquier modo, sometidos a condiciones indebidas de uso, dañados por accidente o negligencia, o a los que se les haya quitado, alterado o borrado el número de serie. Esta garantía tampoco se extenderá a productos instalados o operados de un modo que no se conozca con el manual de instrucciones de Reichert, ni a productos que hayan sido vendidos, reparados o instalados por personas ajenas a la fábrica, un centro de servicio técnico o un distribuidor autorizado de Reichert Technologies.

Las lámparas, las bombillas, los gráficos, las tarjetas y otros elementos fungibles no están cubiertos por esta garantía.

Todos los reclamos que se eleven en virtud de esta garantía deben efectuarse por escrito a la fábrica, el centro de servicio técnico o el distribuidor de instrumentos autorizado de Reichert que llevó a cabo la venta original y deben ir acompañados de una copia de la factura del comprador.

Esta garantía sustituye a cualquier otra garantía, ya sea implícita o explícita. Por medio de la presente, se renuncia a todas las garantías implícitas de comerciabilidad o adecuación para un uso en particular. Ningún representante ni otras personas están autorizados a formalizar ninguna otra obligación por Reichert. Reichert no será responsable de ningún daño especial, incidental o consecuente por negligencia, incumplimiento de la garantía, responsabilidad civil estricta ni otro daño que surja de, o esté relacionado con, el diseño, la fabricación, la venta, el uso o la manipulación del producto.

GARANTÍA DE PATENTES
Si se notifica sin demora y por escrito una acción legal contra el comprador por un reclamo en el que se asevera que el instrumento infringe una patente estadounidense, Reichert asumirá la defensa de dicha acción y se hará cargo de los costos y el resarcimiento que surjan de ella, siempre que Reichert tenga el control exclusivo de la defensa y cuente con información y asistencia (a su cargo) para dicha defensa y para todas las negociaciones del acuerdo pertinente.

CAMBIOS EN LOS PRODUCTOS
Reichert se reserva el derecho de realizar cambios en el diseño o de incorporar agregados o mejoras en sus productos sin la obligación de añadirlos a los productos fabricados anteriormente.

RECLAMOS POR FALTANTES
Somos extremadamente precavidos en la selección, verificación, reinspección y embalaje para eliminar la posibilidad de errores. Si se detecta algún error de envío:
1. Revise cuidadosamente los materiales del embalaje para asegurarse de que no se haya pasado nada por alto inadvertidamente cuando se desembaló la unidad.
2. Llame al distribuidor al que le compró el producto e informe los faltantes. Los materiales se embalan en la fábrica y no debería faltar ninguno si nunca se abrió la caja.
3. Los reclamos deben presentarse en un plazo máximo de 30 días.

RECLAMOS POR DAÑOS EN EL TRANSPORTE
Nuestra responsabilidad sobre el envío finaliza con la entrega segura y en buenas condiciones a la compañía de transporte. Los reclamos por pérdidas o daños durante el transporte deben realizarse sin demora y directamente a la empresa de transporte.

Si al momento de la entrega el exterior de la caja de embalaje presenta señales evidentes de manipulación negligente o daños, se deberá solicitar al agente de la compañía de transporte que anote “Recibido en mal estado” en el recibo de entrega. Si en un plazo máximo de 48 horas posterior a la entrega se observan daños ocultos al desembalar el envío y no hay ninguna señal externa que evidencie una manipulación negligente, se deberá solicitar a la compañía de transporte que redacte un informe de “mal estado”. Este procedimiento es necesario para que el distribuidor conserve el derecho de recuperación de la empresa transportista.
Apéndice A: descripción de datos seriales

Conexión de E/S
• Puerto serial DCE RS-232
• Conector hembra D-sub de 9 pines

Configuración del puerto serial
• Velocidad de transmisión seleccionable del usuario: 2400, 4800, 9600, 19200
• Paridad seleccionable del usuario: ninguna, par, impar
• Bits de datos seleccionables del usuario: 7, 8
• Bits de detención seleccionables del usuario: 1, 2
• Control de flujo: ninguno
• La configuración predeterminada es 19200, ninguna, 8, 1.

Descripción general del formato de datos
• Los datos se imprimen cuando se toca el icono de impresión.
• Comienza con los caracteres 2 <CR>.
• Fecha y hora en que se tomaron las mediciones, seguidas de una línea en blanco.
• Los encabezados de las columnas corresponden a los datos de medición de IOPcc, CH, IOPg y Puntaje de onda.
• Si se toman mediciones, los datos de medición de IOP del ojo derecho incluyen lo siguiente:
 - Etiqueta de datos del ojo derecho (R).
 - La IOPcc (IOP corneal compensada) es un valor con formato de punto fijo de longitud variable.
 - La CH (histéresis corneal) es un valor con formato de punto fijo de longitud variable.
 - La IOPg (IOP de Goldmann) es un valor con formato de punto fijo de longitud variable.
 - El WS (puntaje de onda) es un valor con formato de punto fijo de longitud variable.
• Si se toman mediciones, los datos de medición de IOP del ojo izquierdo incluyen lo siguiente:
 - Etiqueta de datos del ojo izquierdo (L).
 - La IOPcc (IOP corneal compensada) es un valor con formato de punto fijo de longitud variable.
 - La CH (histéresis corneal) es un valor con formato de punto fijo de longitud variable.
 - La IOPg (IOP de Goldmann) es un valor con formato de punto fijo de longitud variable.
 - El WS (puntaje de onda) es un valor con formato de punto fijo de longitud variable.
• Línea en blanco.
• Todas las líneas finalizan con el carácter <CR>.
• El mensaje finaliza con el carácter <EOT>.

-Continúa-
Apéndice A: descripción de datos seriales (continuación)

Posibles variaciones en los datos
- El usuario establece el formato de fecha (MDY, DMY o YMD).
- El usuario establece el formato de hora (24 HR o AM/PM).
- Las etiquetas de datos de cada ojo (derecho e izquierdo) son diferentes para cada idioma seleccionado por el usuario, pero la longitud del texto será siempre la misma.
- El texto correspondiente a cada ojo es el siguiente:
 - Inglés: R L
 - Francés: D
 - Alemán: R L
 - Español: D I
 - Portugués: D E
 - Italiano: D S
 - OD/OS: OD OS
- El usuario selecciona las unidades de medición de IOP (mmHg o kPa). Para mmHg, la precisión de medición es 0,1 mmHg. Para kPa, la precisión de medición es 0,01 kPa.

Datos de muestra

```
06/05/2015   1:44 P. M.

IOPcc   CH   IOPg   WS
(R) 19,8  11,7  21,6  8,1
(L) 19,7  11,8  21,5  7,3
<EOt>
```
Notas
Notas
Fabricado por
Reichert, Inc.
3362 Walden Ave
Suite 100
Depew, NY 14043
EE. UU.

Número gratuito: 888-849-8955
Teléfono: 716-686-4500
Fax: 716-686-4555
Correo electrónico: reichert.information@ametek.com
www.reichert.com

Representante europeo autorizado
AMETEK GmbH
Business Unit Reichert
Carl-von-Linde-Strasse 42
85716 Unterschleissheim/Múnich
Alemania
Correo electrónico: info.reichert-de@ametek.com

Tel.: +49 (89) 315 8911 0
Fax: +49 (89) 315 891 99

Con certificación ISO 13485

16170-101-SPA Rev. B

2018-09-04